
SQL-Sync

Presented by: Luis Gomez

Presented by

SQL-SYNC

• What is it?
• A set of tools that copy most of the data from Collection-Master to a SQL

Server database.
• The SQL Server data will be updated “near real time” with new records added

and existing record refreshed periodically.
• Why do I want this?
• Having Collection-Master in SQL allows users to query and leverage data.

• How does it work?
• By running a series of SYNC sessions that run based on a schedule. Each

session is assigned a list of jobs to Bulk Insert or Incremental Sync the
database.

2

SQL-SYNC

• SQL-Sync is an extremely powerful add-on module to Collection-
Master, designed to manage and automate the process of
synchronizing the Collection-Master database with the SQL Server.
• Click to Buy – It’s Free!
• Once purchased, the Implementation Team will reach out and help

you set up the product.

3

SQL Server
• Microsoft SQL Server is required for SQL-Sync

• Microsoft recommends that the SQL Server be a dedicated machine or VM on the system.
• Use the SQL server for many databases:

• vMedia
• Collection-Master SQL-SYNC
• Q-LawE
• Others

• SQL Server DBA (Database Administrator)
• SQL server requires a DBA to maintain, configure, tune performance, backups, etc.
• Many firms will outsource the DBA role and only require part-time services.

• Vertican Implementation
• 4 CPU’s
• 14 GB of Memory
• This is a tiny SQL Server

• Add CPU & memory to improve performance.

4

Collection-Master Server
• Must be run in Client-Server mode
• Secure Data is supported and encouraged
• Vertican Implementation
• 8 CPU’s
• 32 GB of Memory
• This is a tiny CM Server

• Add CPU & memory to improve performance
• Plan on adding 1 CPU/core per SQL-Sync Session (Minimum of two sessions)
• Generally speaking, 64GB is the minimum memory recommended.

5

SQL-SYNC Implementation
The Implementation Team Process:
• 1st call

• Discuss what is needed prior to set up and schedule.
• 2nd call

• Install/Setup
• Initiate bulk sync

• 3rd call
• Walkthrough of how to set up sync schedule
• Add additional sync session batch files
• Answer any final questions

• E-Mail throughout. Once implementation process has begun, you can
e-mail the team between sessions if any questions arise.

6

SQL-SYNC Implementation
DIY – You can do it yourself!
• Within CM
• Help à Help Manuals à SQL-Sync manual

• SQL-Sync Set up: Step-by-Step Guide

• Read the SQL-SYNC manual (all of it)
• The manual covers details about the product and process.

7

SQL Server Database

• On the SQL-Server
• Create a database with a unique name that corresponds to the Collection-

Master system you are trying to sync.
• Set users up for this database, two basic users are required.
• Admin user: To perform all the administrative functions on this database (SQL

db_owner).
• Functional user: To perform all the day-to-day DB functions such as creating

/deleting/writing to tables (SQL ddl_owner)
• Note: SQL-Sync only serves to maintain the SQL Database, functional users are users that

will consume the SQL Server Database.

8

Mapdrive._CS

• SQL-Sync-SERVER = Server Name (Ex: CM-SQL)
• SQL-Sync-DATABASE = Database Name (Ex: CM)

9

SQL Sync Tables
• UPPER CASE tables
• Collection-Master data or tables.

• Mixed Case Tables
• Configuration or calculated data provided by SQL-Sync
• CategLst
• Folders
• SyncItemizedLog
• SyncLog
• SyncSchedule
• SyncSQLLog

10

SQL Sync Tables
• CategLst

• Itemized List of Financial Codes
• COSTCODE – Table that contains the various Cost Codes set up in [2-S-2].
• LETTERS – Table that contains the various Documents set up in [1-7-1].

• Folders
• 1 = Open Claims Information
• 2 = Closed Claims Information
• 10 = Common Data Files
• 11 = Share Data File
• 20 = EDI Data Files
• 30 = HELP Files
• 40 = ZipCodes
• 1000+ = Bank Accounts

11

SQL Sync Tables
• SyncItemizedLog

• Contains itemized details on
each SQL Job.

12

Field Name Description

[LogId] Identity Field (Counter)

[UserName] Windows Login Name

[ClientWorkStation] Workstation running Sync

[BRSession_Id] Session ID

[EventId] Event ID from SyncSchedule

[TableName] SQL name for table being updated

[Folder_Code] DATA, HISTORY, etc.

[CallingFunc] BULK_INS, INCR_SYNC, SYNC_FOLDER

[StartTime] Time process started

[EndTime] Time process ended

[BRTotal_Recs] Total # of Records (File size)

[AddCount] # of Records Inserted

[DeleteCount] # of Records Deleted

[UpdateCount] # of Records Updated

[SqlSession_Id] SQL Session ID (1,2,etc)

SQL Sync Tables
• SyncLog

• Used to record the last time each
event was run

• SyncSchedule

13

Field Name Description

[EventId] Event ID from SyncSchedule

[LastRunAt] The last time the Event was run

Field Name Description
[EventId] Identifier for each Event (Unique ID)
[Event] Actual Event including table (BULK_INS:, INCR_SYN:)
[Folder_Code] Code to identify folder (Open,Closed, Account, Misc, EDI, ZipCodes, SQL)
[Group_Code] English description for the Table/Group of tables
[TimeOfDay] Mostly unused enter a military time to execute once per day
[FreqInMinutes] How long to wait in minutes between running this event. (0=Instant)
[Start_Record] Very large files can take too long to run INCR_SYN. Starting Record
[End_Record] Ending Record (- values are relative to last record)
[Start_TimeOfDa
y] Minimum time for session to run. Low priority files can be run in off hours.
[End_TimeOfDay
] Maximum time for session to Run. Low priority files can be run in off hours.
[Enabled] True = Run | False = Don't Run
[Session_ID] Session # - When running session in CM, each session may pick a #.

How to Set Up Sync-Schedule.
• Dbo.Synschedule

• This table is delivered with a possible configuration
• Session 1: Bulk_INS Imports new Records.

• Bulk_INS is very fast
• Tables scheduled every 60 minutes from 06:00 to 20:00
• Except closed BUCKETS_EDI & FINAN_EDI

• Session 2: Inc_Sync Updates existing records.
• Inc_Sync takes a lot more time.
• Highest priority scheduled every 60 minutes from 06:00 to 20:00
• Other items scheduled every 60 minutes from 18:00 to 20:00

• Tables that need to be updated more often, create additional sessions.
• It’s a balance of time & resources. Running nine sessions updating every five minutes requires

very beefy CM & SQL servers!

14

SQL Sync Tables

• SyncSQLLog
• Itemized Log of Schema updates

15

Field Name Description

[TransId] Identifier for each Log Entry (Unique ID)

[StartedAt] Start Time for Log Entry

[EndedAt] End Time for Log Entry

[Module] FN_ALTER_TABLE, FNTRUNCATE_TABLE,FN_CREATE_SQL_TABLE)

[SqlString] Actual SQL applied to database

SQL Sync Views

• View_Paperless
• View that performs the necessary joins and concatenation to display the paperless file as

it displays in Collection-Master.

16

Field Name Description

[Folder_Number] (1) Open / (2) Closed

[Record_Number] Record # in CM (Natural Order)

[FILENO] Claim # in Collection-Master

[DATE_TIME] Date & Time of Transactions

[INIT] Use Initials

[CODE] Paperless File Code

[NOTE] Paperless File Note (Including Translated Description)

[BILLED_DATE] Date associated with Document Billing

[RECNO] The Record # used for linking with tables like PS Comments

[RECEIVED] Financial - Amount Received

[DISBURSED] Financial - Amount Disbursed

SQL Sync Views (Other)

• View_Schedule
• Links View_Sync_Schedule & View_SyncLog
• For each Event, shows the Last Time it ran, and the next scheduled run

• View_SyncItemizedLog – Itemized list of sync sessions
• View_SyncLog

• Links SyncLog & SyncSchedule
• Depreciated, use View_Schedule instead

• View_SyncSchedule – Itemized list of sync schedule

17

Scalar-Valued Functions
• ufnCateg2

• Converts a Paperless Code to the Description
• Select dbo.uFNCateg2('51') as Description

• Returns ‘File Suit’
• ufnCollord

• Expands a Collection Order uses default if blank
• Select dbo.ufnCollord('CPI','COPLVIE’)

• Returns ‘CLIPVI’
• ufnDate_Time

• Merges a Date field with a numeric “100’s of Seconds” as stored in DB
• Select [dbo].[ufnDate_Time]('2021-03-03',105100)

• Returns ‘2021-03-03 00:17:31.000’
• ufnSeconds_Spent

• Compares two time fields and returns “100’s of Seconds” as stored in DB
• Select [dbo].ufnSeconds_Spent('08:00:00','11:30:00’)
• Returns 12600

• ufnStime$
• Converts ‘100’s of Seconds’ to “Normal Time”
• Select [dbo].ufnStime$(12610)
• Select [dbo].ufnStime$([dbo].ufnSeconds_Spent('08:00:00','11:30:00'))
• Returns’ 00:02:06:1’ HH:MM:SS:MS

18

SQL Tips

• WITH (Nolock)
• Prevents query from locking tables.
• FROM [CM-SQL].[dbo].[TRACKUSR] WITH (NOLOCK)

• COUNT(*), SUM, MAX, MIN /w GROUP BY
• Count , Add, largest, smallest

• GETDATE()
• Returns Today. >=GETDATE()-30 is 30 days or newer.

• CAST
• Converts data types
• CAST(dbo.ufnSeconds_Spent([sTime],[Time]) as INT)

• ISNULL
• Used to handle NULL values.

• https://www.w3schools.com/SQL/
• Everything you always wanted to know about SQL!

19

https://www.w3schools.com/SQL/

dbo. AccountCard
• Stp_Make_AccountCard
• Step 1 Creates dbo. AccountCard
• Run this one time

• Stp_Update_AccountCard
• Step 2, populates dbo. AccountCard with account card information
• Query may be a bit slow as it calculates the account card and updates every

claim.
• The Resulting table includes many Collection-Master calculated field.
• Look at the provided stored procedure to learn how Collection-Master

internals work!

20

Connecting to SQL Server in MS-Excel

SELECT COUNT(*) as Count,

SUM(CAST(dbo.ufnSeconds_Spent([sTime],[Time]) as INT)) as Spent

,[WHOAMI]

,[TRCK_DATE]

FROM [CM-SQL].[dbo].[TRACKUSR] WITH (NOLOCK)

Where TRCK_DATE>=GETDATE()-30

GROUP BY WHOAMI,TRCK_DATE

Order by TRCK_DATE,WHOAMI

21

Importing Data into Collection-Master
• List of Claims

• Query Claims
• Report Generator

• Merge-POP
• CM EDI

• Create
• FILENO
• PRE_J_RATE
• POST_J_RATE
• INT_DATE
• STORED_INT
• #

22

CM EDI RT 171
-- Stop Accruing Interest Using the Last
PER_DIEM_INT Value.
-- Select Claims in Lawson, AR

SELECT
'171' AS Record
,'D' as [H]
,[MASTER].[FILENO]
,'0.00' as PRE_J_RATE
,'0.00' as POST_J_RATE
,CAST(GETDATE() as DATE) as INT_DATE
,PER_DIEM_INT as STORED_INT
,D1_CS
,'#' as [#]

FROM [CM-SQL].[dbo].[MASTER] WITH (Nolock)
INNER JOIN [CM-SQL].[dbo].[DEBTOR] With

(Nolock)
ON MASTER.FILENO=DEBTOR.FILENO
and DEBTOR.NUMBER=1

Where Master.Folder_Number=1
and DEBTOR.ST = 'AR'
and DEBTOR.CITY= 'Lawson'

23

Link SQL to MS-EXCEL

• Create a View in SQL-Server
• Link Excel to SQL Server Database
• Export as Text File
• Text File may be used in Collection-Master
• CM EDI 171 sample
• Merge-Pop, ASCII list of Claims, GENERAL EDI

24

Link SQL to MS-ACCESS

• Create a View in SQL-Server
• Link Excel to SQL Server Database
• Export as Text File
• MS-Access has a Bug, [#] Exports as a . (have to fix manually)

• Text File may be used in Collection-Master
• CM EDI 171 sample
• Merge-Pop, ASCII list of Claims, GENERAL EDI

25

26

27

To learn about upcoming trainings:
https://vertican.tech/mastermind/

To view past trainings:
https://vimeo.com/ondemand/verticanmastermindseries/

https://vertican.tech/mastermind/
https://vimeo.com/ondemand/verticanmastermindseries/525785065?autoplay=1

